People Innovation Excellence

Photovoltaics in Satellites

The first satellite powered by the sun was sent into orbit 50 years ago this month. Photovoltaics have progressed much since then, but the progress has been slower than many people realize

Sixty years ago this month, a rocket lifted off from Cape Canaveral bearing the Vanguard 1 satellite, a small, 1.46-kilogram aluminum sphere that was the first to use photovoltaic cells in orbit.

As a safeguard, one of the satellite’s two transmitters drew power from mercury batteries, but they failed after just three months. The six monocrystalline silicon cells, each roughly 5 centimeters on a side and delivering a total of just 1 watt, kept on powering a beacon transmitter for 14 months, until May 1964.

It happened in space because cost was no object. In the mid-1950s, PV cells ran about US $300 per watt. The cost fell to about $80/W in the mid-1970s, to $10/W by the late 1980s, to $1/W by 2011, and to about 40 cents per watt in 2017. That’s enough to bring the total system cost—for installations with single-axis tracking—close to $1/W. Forecasts indicate that the cost will fall by as much as 60 percent further by 2025.

This is good news because PV cells have a higher power density than any other form of renewable energy conversion. Even as an annual average they already reach 10 watts per square meter in sunny places, more than an order of magnitude higher than biofuels can manage. And, with rising conversion efficiencies and better tracking, it should be possible to increase the annual capacity factors by 20 to 40 percent.

But the anniversary of the launch reminds us that it has taken quite a while to get to this point. Edmond Becquerel first described the photovoltaic effect in 1839 in a solution, and William Adams and Richard Day discovered it in 1876 in selenium. Commercial opportunities opened up only when the silicon cell was invented at Bell Telephone Laboratories, in 1954. Even then, the cost per watt remained around $300, and except for use in a few toys, PVs were just not practical.

It was Hans Ziegler, an electronic engineer with the U.S. Army, who overcame the U.S. Navy’s initial decision to use only batteries on the Vanguard. During the 1960s, PV cells made it possible to power much larger satellites that revolutionized telecommunications, spying from space, weather forecasting, and the monitoring of ecosystems. As costs declined, applications multiplied, and PV cells began to power lights in lighthouses, offshore oil and gas drilling rigs, and railway crossings.

Published at :
Leave Your Footprint

    Periksa Browser Anda

    Check Your Browser

    Situs ini tidak lagi mendukung penggunaan browser dengan teknologi tertinggal.

    Apabila Anda melihat pesan ini, berarti Anda masih menggunakan browser Internet Explorer seri 8 / 7 / 6 / ...

    Sebagai informasi, browser yang anda gunakan ini tidaklah aman dan tidak dapat menampilkan teknologi CSS terakhir yang dapat membuat sebuah situs tampil lebih baik. Bahkan Microsoft sebagai pembuatnya, telah merekomendasikan agar menggunakan browser yang lebih modern.

    Untuk tampilan yang lebih baik, gunakan salah satu browser berikut. Download dan Install, seluruhnya gratis untuk digunakan.

    We're Moving Forward.

    This Site Is No Longer Supporting Out-of Date Browser.

    If you are viewing this message, it means that you are currently using Internet Explorer 8 / 7 / 6 / below to access this site. FYI, it is unsafe and unable to render the latest CSS improvements. Even Microsoft, its creator, wants you to install more modern browser.

    Best viewed with one of these browser instead. It is totally free.

    1. Google Chrome
    2. Mozilla Firefox
    3. Opera
    4. Internet Explorer 9