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Abstract- The Hough transform is a method for L-tecting curves by exploiting the duality between points on
a curve and parameters of that curve . The initial work showed how to detect both analytic curves" " and
non-analytic curves," but these methods were restricted to binary edge images . This work was generalized to
the detection of some analytic curves in grey level images, specifically lines ;et circlest't and parabolas."" The
line detection case is the best known of these and has been ingeniously exploited in several applications!"'"

We show how the boundaries of an arbitrary non-analytic shape can be used to construct a mapping
between image space and Hough transform space . Such a mapping can be exploited to detect instances of that
particular shape in an image. Furthermore, variations in the shape such as rotations, scale changes or figure-
ground reversals correspond to straightforward transformations of this mapping . However, the most
remarkable property is that such mappings can be composed to build mappings for complex shapes from the
mappings of simpler component shapes . This makes the generalized Hough transform a kind of universal
transform which can be used to find arbitrarily complex shapes .
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1 . INTRODUCTION

In an image, the pertinent information about an
object is very often contained in the shape of its
boundary. Some appreciation of the importance of
these boundary shapes in human vision can be gained
from experiments performed on the human visual
system, which have shown that crude encodings of the
boundaries are often sufficient for object recog-
nitiont tol and that the image may be initially encoded
as an 'edge image', i,e . an image of local intensity or
color gradients . Marrtt 1, t has termed this edge image a
'primal sketch' and suggested that this may be a
necessary first step in image processing . We describe a
very general algorithm for detecting objects of a
specified shape from an image that has been transfor-
med into such an edge representation . In that repre-
sentation, sample points in the image no longer
contain grey level information, but instead each sam-
ple point contains a magnitude and direction repre-
senting the severity and orientation of the local grey
level change.

Operators that transform the image in such a way
are known as edge operators, and many such oper-
ators are available, all based on different models of the
local grey level changes. Two of the most used are the
gradient operator (for example, see Prewitt(t 2t) and the
Hueekel operator,"" which model local grey level
changes as a ramp and a step respectively .
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transform . (a) Simple shape ; (b) composite shape.
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Our generalized Hough algorithm uses edge infor-
mation to define a mapping from the orientation of an
edge point to a reference point of the shape . The
reference point may be thought of as the origin of a
local co-ordinate system for the shape . Then there is an
easy way of computing a measure which rates how well
points in the image are likely to be origins of the
specified shape. Figure I shows a few graphic examples
of the information used by the generalized Hough
transform. Lines indicate gradient directions . A feature
of the transform is that it will work even when the
boundary is disconnected due to noise or occlusions .
This is generally not true for other strategies which
track edge segments.

The original algorithm by Hough "' did not use

(a)

(b)
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orientation information of the edge, and was con-
siderably inferior to later work using the edge orien-
tation for parametric curves . (',6,'4) Shapirot15,16 .1 ')
has collected a good bibliography of previous work as
well as having contributed to the error analysis of the
technique .

1 .1 Organization

Section 2 describes the Hough transform for ana-
lytic curves. As an example of the parametric version of
the transform, we use the ellipse . This example is very
important due to the pervasiveness of circles in images,
and the fact that a circle becomes an ellipse when
rotated about an axis perpendicular to the viewing
angle. Despite the importance of ellipses, not much
work has used the Hough transform . The elliptical
transform is discussed in detail in Section 3 . Section 4
describes the generalized algorithm and its properties .
Section 5 describes special strategies for implementing
the algorithm and Section 6 summarizes its
advantages .

2. THE HOUGH TRANSFORM FOR ANALYTIC
CURVES

We consider analytic curves of the form f (x,a) = 0
where x is an image point and a is a parameter vector .

(a)

(b)

b

Fig. 2. (a) Locus of parameters with no directional infor-
mation . (b) Locus of parameters with directional information .
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To see how the Hough transform works for such
curves, let us suppose we are interested in detecting
circular boundaries in an image_ In Cartesian co-
ordinates, the equation for a circle is given by

(x-a)2 + (y-b)2 = r2 .

	

(1)

Suppose also that the image has been transformed into
an edge representation so that only the magnitude of
local intensity changes is known. Pixels whose magni-
tude exceeds some threshold are termed edge pixels.
For each edge pixel, we can ask the question : if this
pixel is to lie on a circle, what is the locus for the
parameters of that circle? The answer is a right circular
cone, as shown in Fig . 2(a) . This can be seen from
equation (1) by treating x and y as fixed and letting, a,
b, and r vary.

The interesting result about this locus in parameter
space is the following. If a set of edge pixels in an image
are arranged on a circle with parameters ao , b o , and ra,
the resultant loci of parameters for each such point will
pass through the same point (a v,ba,rn ) in parameter
space. Thus many such right circular cones will
intersect at a common point .

2 .1 Directional information

We see immediately that if we also use the directional
information associated with the edge, this reduces the
parameter locus to a line, as shown in Fig . 2(b) . This is
because the center of the circle for the point (x, y) must
lie r units along the direction of the gradient . Formally,
the circle involves 3 parameters . By using the equation
for the circle together with its derivative, the number of
free parameters is reduced to one . Formally, what
happens is the equation

dx
(x,a)=0

introduces a term dy/dx which is known since

dy _

	

f]
dx -

tan O(x) - 22

where O(x) is the gradient direction . This suggests the
following algorithm.
Hough algorithm for analytic curves in grey level

images. For a specific curve f (x, a) = 0 with parameter
vector a, form an array A(a), initially set to zero. This
array is termed an accumulator array. Then for each
edge pixel x, compute all a such that f(x, a) = 0 and
df/dx(x, a) = 0 and increment the corresponding accu-
mulator array entries :

A(a) : = A(a) + 1 .

After each edge pixel x has been considered, local
maxima in the array A correspond to curves off in the
image .

If only the equation f (x, a) = 0 is used, the cost of the
computation is exponential in the number of para-
meters minus one, that is, where m parameters each
have M values, the computation is proportional to



i

Fig . 3 . Using convolution templates to compensate for
errors .

M" -t . This is because the equation of the curve can be
used to determine the last parameter . The use of
gradient directional information saves the cost of
another parameter making the total effort propor-
tional to M'"- ', form >_ 2 .

2.2 Compensating for errors

A problem arises in detecting maxima in the array
A(a). Many sources of error effect the computation of
the parameter vector a so that in general many array
locations in the vicinity of the ideal point a are
incremented instead of the point itself. One way of
handling this problem is to use a formal error model on
the incrementation step . This model would specify a
set of nearby points instead of a single point . Sha-
piro(15-I S) has done extensive work on this subject .
Another solution to this problem is to replace uncom-
pensated accumulator values by a function of the
values themselves and nearby points after the in-
crementation step. The effect of this operation is to
smooth the accumulator array . We show that, under
the assumption of isotropic errors, these methods are
equivalent.

Returning to the initial example of detecting circles,
the smoothing of the accumulator array is almost
equivalent to the change in the incrementing pro-
cedure we would use to allow for uncertainties in the
gradient direction 0 and the radius r. If we recognized
these uncertainties as :

0(x) ± AO

r + Ar(r)

we would increment all values of a which fall within the
shaded band of Fig. 3 . We let Ar increase with r so that
uncertainties are counted on a percentage basis . Figure
3 shows the two-dimensional analog of the general
three-dimensional case.

Suppose we approximate this procedure by incre-
menting all values of a which fall inside the square
domain centered about the nominal center shown in
Fig. 3, according to some point spread function h . After
the first contributing pixel which increments center n o
has been taken into account, the new accumulator
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array contents A will be given by

A(a) = h(a-a0)

	

(2)

where a=(a t,a z,r) and ao =(ato,a20 ,rn ). If we in-
clude all the contributing pixels for that center,
denoted by C, the accumulator is

A(a)=C(ao)h(a-ao) .

	

(3)

Finally for all incremented centers, we sum over a o :

A(a)=L C(ao)h(a -ao) .

	

(4)

But C(a n ) = Ala .), soy that

A(a) _ A(ao)h(a-an )

= A*h

A,(a) .

	

(5)

Thus within the approximation of letting the square
represent the shaded band shown in Fig . 3, the
smoothing procedure is equivalent to an accom-
modation for uncertainties in the gradient direction
and radius .

3. AN EXAMPLE : ELLIPSES

The description of the algorithm in Section 2 .1 is
very terse and its implementation often requires con-
siderable algebraic manipulation. We use the example
of finding ellipses to show the kinds of calculation
which must be done . Ellipses are an important exam-
ple, as circles, which are a ubiquitous part of many
everyday objects, appear as ellipses when viewed from
a distant, oblique angle.
We use the center of the ellipse as a reference point and
assume that it is centered at xo, y o with major and
minor diameters a and b . For the moment, we will
assume that the ellipse is oriented with its major axis
parallel to the x-axis . Later we will relax this require-
ment by introducing an additional parameter for
arbitrary orientations. For the moment, assume a and
b are fixed . Then the equation of the ellipse is :

(_x-xo)' (Y - yo)'
a'

	

+

	

b'
= 1.

	

(6)

-x

Fig. 4. Parametrization of an ellipse with major axis parallel
to x-axis.
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Let X = x- x,, Y = y-y o, then

But dY/dX is known from the edge pixel information!

and finally, given a, b, x, y and dY/dX, we can determine
x o and y o as :

The four solutions correspond to the four quad-
rants, as shown in Fig . 5 . The appropriate quadrant
can be found from the gradient by testing the signed
differences dY and dX .

The final step is to handle rotations by introducing a
fifth parameter 0 . For an arbitrary 0, we calculate
(X, Y) using

1;=tan ( -0- Z)

and rotate these (X, Y) by 0 to obtain the correct

Fig. 5 . Four reference point solutions resolvable with gra-
dient quadrant information .
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(xo,yo ). In ALGOL we would implement this as :
procedure HoughEllipse (integer XminXm,,, YminYma„
0mmAm.,, amigo .,., hmmhm ,,, x, y, xo, yo, dx, dy ; real angle, ;
integer array A, P) ;
begin ;
for x : = x m ;,, step dx to xm„, do
for y : = Ym; g step dy to y ma, do

begin
dX :=P(x+delta, y)-P(x, y) ;
dY : = P(x. y+delta)-P(x, y) ;

for a : = a mi „ step da until ama , do
for b : = b mig step db until bma , do
for 0 : = 9 m ;,, step JO until f)ma , do

begin ;

	

(dY

	

n
angle : =arctan

ldX
I-B-

2
;

( ; = tan(angle) ;
a 2

dx : = Sign X(dX,dY)--bi - ;
(1 + aaV)

b 2
dy : = Sign Y (dX, d Y)

\'` `

	

b 2)
a

Rotate-by-Theta(dx, dy) :
xo :=x+dx ;
yo : = y + dy ;
A(xmy,, B, a, b) : = A(xo, yo, g, a, b) + 1 ;

end ;
end .

Notice that to determine the appropriate formulae for
an arbitrary orientation angle 0, we need only rotate
the gradient angle and the offsets dx and dy . SignX
and Sign Y are functions which return ± 1 depending
on the quadrant determined by dX and dY.

3.1 Parameter space image space trade-o]fs

Tsuji and Matsumotot 19l recognized that a de-
creased computational effort in parameter space could
be traded for an increased effort in edge space . It is our
intent to place these ideas on a formal footing . Later we
will see that the same kind of trade-off is potentially
available for the case of arbitrary shapes, but is
impractical to implement .

An ellipse has five parameters. Referring to the basic
algorithm in Section 2 .1, we use the equation for the
ellipse together with its derivative to solve for two of
these parameters as a function of the other three. Thus
the algorithm examines every edge point and uses a
three-dimensional accumulator array so that the com-
putations are of order 0(ed 3), Here e is the number of
edge pixels and we are assuming d distinct values for
each parameters . Suppose we use pairs of edge points
in the algorithm . This results in four equations, two
involving the equation for an ellipse evaluated at the
different points and two for the related derivatives .
This leaves one free parameter . Thus the resultant
computational effort is now O(e 2d). The detailed
derivation of this form of the Hough algorithm is
presented in the Appendix .

If parameter space can be highly constrained so that
the set of plausible values is small, then the former
technique will be more efficient, whereas if there are

Let dY/dX= , then from (8)

I/az

	

z
X 2 =

\bz
~ Yz . (9)

Substituting in (7)

(10)
Yz

	

a 2
b2 (I + b2 2) = 1

b2
Y=± (11)

a 2
~1

+ bz
V )

so that

az
(12)X=±-

J(1 + a
b2
2~2)

x2 Y 2

a2 +
b 2 -1 (7)

Differentiating with respect to X

(8)
2X 2Y dY

a2 + b2 dX = 0
.

a 2
xo = x + (13)

~(b2
1 + a242

bz
Yo = Y ± /

	

ai~(14 )

J\1 + b22 ) ,



relatively few edges and large variations in parameters,
the latter will be more efficient .

4. GENERALIZING THE HOUGH TRANSFORM

To generalize the Hough algorithm to non-analytic
curves we define the following parameters for a
generalized shape :

a={y,s,0},

where y = (x„ y,) is a reference origin for the shape, 0 is
its orientation, and s = (s,, .s,,) describes two orthog-
onal scale factors. As before, we will provide an
algorithm for computing the best set of parameters a
for a given shape from edge pixel data . These para-
meters no longer have equal status . The reference
origin location, y, is described in terms of a table of
possible edge pixel orientations . The computation of
the additional parameters s and 0 is then accomplished
by straightforward transformations to this table . [To
simplify the development slightly, and because of its
practical significance, we will work with the four-
dimensional sunspace a = (y, s, 0), where s is a scalar .]

In a sense this choice of parameters includes the
previous analytic forms to which the Hough transform
has been applied. Table 1 shows these relationships .

4.1 Earlier work : arbitrary shapes in binary edge
images

Merlin and Farber" s ' showed how to use a Hough
algorithm when the desired curves could not be
described analytically. Each shape must have a specific
reference point. Then we can use the following algor-
ithm for a shape with boundary points B denoted by
{xa} which are relative to some reference origin y.

Merlin Farber Hough algorithm : non-analytic cur-
ves with no gradient direction information a = y. Form
a two-dimensional accumulator array A(a) initialized
to zero. For each edge pixel x and each boundary point
xe , compute a such that a = x-x a and increment
A(a). Local maxima in A(a) correspond to instances of
the shape in the image .

Note that this is merely an efficient implementation
of the convolution of the shape template where edge
pixels are unity and others are zero with the cor-
responding image, i .e.,

Generalizing the Hough transform to detect arbitrary shapes
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Table 1 . Analytic curves described in terms of the generalized shape parameters s„ y„

* Plus rotation by 0 .

A(x) = T(x)*S(x)

	

(15)

where E is the binary edge image defined by

E(x)

	

1 if x is an edge pixel
~0 otherwise

and T(x) is the shape template consisting of ones where
x is a boundary point and zeros otherwise, i .e.,

T(x)

	

I if x is in B
0 otherwise .

This result is due to Sklansky .t 2n'
The Merlin- Farber algorithm is impractical for real

image data. In an image with a multitude of edge
pixels, there will be many false instances of the desired
shape due to . coincidental pixel arrangements . Never-
theless, it is the logical precursor to our generalized
algorithm .

4.2 The generalization to arbitrary shapes

The key to generalizing the Hough algorithm to
arbitrary shapes is the use of directional information .
Directional information, besides making the algor-
ithm faster, also greatly improves its accuracy . For
example, if the directional information is not used in
the circle detector, any significant group of edge points
with quite different directions which lie on a circle will
be detected . This can be appreciated by comparing
Figs 2(a) and 2(b).
Consider for a moment the circular boundary

detector with a fixed radius r 0 . Now for each gradient
point x with direction 0. we need only increment a
single point x+r. For the circle :

lrl = r o

	

(16)

Angle(r) = O (x) .

	

(17)

Now suppose we have an arbitrary shape like the one
shown in Fig. 6. Extending the idea of the circle
detector with fixed radius to this case, for each point x
on the boundary with gradient direction ¢, we incre-
ment a point a = x+r . The difference is that now r
= a-x which, in general, will vary in magnitude and
direction with differentt boundary points .

S„ S,, 0

Analytic form Parameters Equation

Line S,0 xcos0+ysin0=S
Circle x„Y„S (x- x,)2+(Y-yd'=S'

Parabola x„y„S„g (y-y,)' =4S,(x-x,)*

Ellipse 0 - Y J , (X_- AX 1 .
S2

	

S2
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Fig. 6 . Geometry for generalized Hough transform .

The fact that r varies in an arbitrary way means that
the generalized Hough transform for an arbitrary
shape is best represented by a table which we call the
R-table .

4 .3 The R-table

From the above discussion, we can see that the R-
table is easily constructed by examining the boundary
points of the shape. The construction of the table is
accomplished as follows .

Algorithm for constructing an R-table . Choose a
reference point y for the shape. For each boundary
point x, compute ¢(x) the gradient direction and r
= y - x. Store r as a function of ¢ .
Notice that the mapping the table represents is

vector-valued and, in general, an index d, may have
many values of r. Table 2 shows the form of the R-table
diagrammatically.

The R-table is used to detect instances of the shape S
in an image in the following manner.

Generalized Hough algorithmfor single shapes. For
each edge pixel x in the image, increment all the
corresponding points x+r in the accumulator array A
where r is a table entry indexed by 0, i .e ., r(O) . Maxima
in A correspond to possible instances of the shape S .

4 .4 Examples

Some simple shapes are rotation-invariant, that is,
the entries in the incrementation table are invariant
functions of the gradient direction 0 . Figure 7(a) shows
an example for washers (or bagels) . Here there are
exactly two entries for each 0, one r units in the
gradient direction and one R units in the direction
opposite to the gradient direction . In another case the
entries may be a simple function of d, . Figure 7(b)

Table 2. R-table format

D. H . BALLARD

shows such an example; hexagons. Irrespective of the
orientation of the edge, the reference point locus is on a
line of length lparallel to the edge pixel and (3/2)1 units
away from it .

Another example is shown in Fig. 8 . Here the points
on the boundary of the shape are shown in Fig . 8(a). A
reference point is selected and used to construct the R-
table. Figure 8(b) shows a synthetic image of four
different shapes and Fig . 8(c) shows the portion of the
accumulator array for this image which has the correct
values of orientation and scale . It is readily seen that
edge points on the correct shape have incremented the
same point in the accumulator array, whereas edge
points on the other shapes have incremented disparate
points .

4.5 R-table properties and the general notion of a shape

Up to this point we have considered shapes of fixed
orientation and scale . Thus the accumulator array was
two-dimensional in the reference point co-ordinates .
To search for shapes of arbitrary orientation 0 and
scale s we add these two parameters to the shape
description. The accumulator array now consists of
four dimensions corresponding to the parameters
(y, s, 0) . The R-table can also be used to increment this
larger dimensional space since different orientations
and scales correspond to easily-computed transfor-
mations of the table. Additionally, simple transfor-
mations to the R-table can also account for figure-
ground reversals and changes of reference point .

We denote a particular R-table for a shape S by
R(¢). R can be viewed as a multiply-vector-valued
function . It is easy to see that simple transformations
to this table will allow it to detect scaled or rotated
instances of the same shape . For example if the shape is
scaled by s and this transformation is denoted by T,,
then

T,[R(¢)] = sR(¢)

	

(18)

i .e., all the vectors are scaled by s. Also, if the object is
rotated by 0 and this transformation is denoted by Ts,
then

T0[R(¢)] = Rot{R[(4,-0)mod2n],0}

	

(19)

i .e., all the indices are incremented by -0 modulo 2n,
the appropriate vectors r are found, and then they are
rotated by 0 .

To appreciate that this is true, refer to Fig . 9. In this
figure an edge pixel with orientation P may be
considered as corresponding to the boundary point x,,,
in which case the reference point is y,, . Alternatively,
the edge pixel may be considered as x a on a rotated
instance of the shape, in which case the reference point
is at yg which can be specified by translating r,, to x e
and rotating it through +AO .

Figure-ground intensity reversals can also be taken
into account via a simple R-table modification. The
indices in the table are changed from ¢ to
((k +n)mod2n . Of course

Tre{Tf,[R(4,)]} = R(¢)

, 01 Ro:

0 0 {rla-r=x,xinB,O(x)=0)
1 A4, {rJa-r=x,% in B, O(x) = A01
2 2A4 {rya-r=x,xinB,4(x)=2A4



(a)

(b)

Generalizing the Bough transform to detect arbitrary shapes

	

117

Fig . 7 . Simple examples using R-tables ; (a) washers ; (b) hexagons.

Fig. 8 . An example. (a) Points on a shape used to encode R-table. (b) Image containing shape . (c) A plane
through the accumulator array A(x,, y, So, Be ), where S e and O o are appropriate for the shape in the image

(S o = 64, On = 0) .
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where Tf, denotes the figure- ground transformations .
Another property which will be useful in describing

the composition of generalized Hough transforms is
the change of reference point. If we want to choose a
new reference point y' such that y-y' = r then the
modification to the R-table is given by R(¢) + r, i .e . r is
added to each vector in the table.

4.6 Using pairs of edges
We can also entertain the idea of using pairs of edge

pixels to reduce the effort in parameter space . Using
the R-table and the properties of the previous section,
each edge pixel defines a surface in the four-
dimensional accumulator space of a = (y, s, 0) . Two
edge pixels at different orientations describe the same
surface rotated by the same amount with respect to 0 .
Points where these two surfaces intersect (if any)
correspond to possible parameters a for the shape .
Thus in a similar manner to Section 3.1, it is theoreti-
cally possible to use the two points in image space to
reduce the locus in parameter space to a single point .
However, the difficulties of finding the intersection
points of the two surfaces in parameter space will make
this approach unfeasible for most cases .

4.7 The Hough transform for composite shapes
Now suppose we have a composite shape S which

has two subparts S, and S 2 . This shape can be detected
by using the R-tables for S t and S2 in a remarkably
simple fashion . If y, yt , y i are the reference points for
shapes S, St and SZ respectively, we can compute r t
= y-y, and r z = y-yz. Then the composite genera-
lized Hough transform R 5(¢) is given by

RS(tb) _ [R,,(4) + r,] v [Rs,(O) + r2] (20)

which means that for each index value 4,, r t is added to
Rs,((Ar2 is added to R 5 ,(Q), and the union of these sets

Fig, 9 . Construction for visualizing the R-table transformation for a rotation by AO. Point A can be viewed as :
(1) on the shape (	), or(2)aspointBontheshape(---), rotated by AO . lf(2) is used then the appropriate

R is obtained by translating R„ to A and rotating it by ao as shown .

is stored in R s (4i) . Equation 20 is very important as it
represents a way of composing transforms .

In a similar manner we can define shapes as the
difference between tables with common entries, i .e.,

Rs=Rs, - Rs,

	

(21)

means the shape S defined by St with the common
entries with S 2 deleted . The intersection operation is
defined similarly. The primary use of the union
operation is to detect shapes which are composites of
simpler shapes . However, the difference operation also
serves a useful function. Using it, R-tables which
explicitly differentiate between two similar kinds of
shapes can be constructed . An example would be
differentiating between the washers and hexagons
discussed earlier.

4.8 Building convolution templates
While equation (20) is one way of composing Hough

transforms, it may not be the best way . This is because
the choice of reference point can significantly affect the
accuracy of the transform . Shapirot	has shown
this, emphasizing analytic forms . This is also graphi-
cally shown in Fig . 10 . As the reference point becomes
distant from the shape, small angular errors in 0 can
produce large errors in the vectors R(O) .

One solution to this problem is to use the table for
each subshape with its own best reference point and to
smooth the resultant accumulator array with a com-
posite smoothing template. Recall that for the case of a
single shape and isotropic errors (Section 2.2), con-
volving the accumulator array in this fashion was
equivalent to taking account of the errors during the
incrementation .
Where h,(y,) denotes the smoothing template for

reference point y, of shape S, the composite con-
volution template is given by



Fig . 10 . Effects of changing reference point on errors .

v
H(y) _

	

h,(y - yi) .

	

(22)

So finally, we have the following algorithm for the
detection of a shape S which is the composite of
subparts S 1 . . .S,v .

Generalized Hough algorithm for composite shapes. 1 .
For each edge point with direction 0 and for each
value of scale s and orientation 0, increment the
corresponding points x + r in A where r is in

( rR,(O) = T.. S To
[
UN R51(O) .

2. Maxima in A, = A•H correspond to possible
instances of the shape S . Figure 11 shows a simple
example of how templates are combined .

If there are n edge pixels and M points in the error
point spread function template, then the number of
additions in the incrementation procedure is M . Thus
this method might at first seem superior to the
convolution method, which requires approximately
n 2M additions and multiplications where M < n 2 , the
total number of pixels . However, the following heuris-
tic is available for the convolution since A is typicallly
very sparse . Compute

A,(a) only if A(a) > 0 .

	

(23)

This in practice is very effective, although it may
introduce errors if the appropriate index has a zero
value and is surrounded by high values .

5. INCREMENTATION STRATEGIES

If we use the strategy of incrementing the accumu-
lator array by unity, then the contents of the accumu-
lator array are approximately proportional to the
perimeter of the shape that is detectable in the image .

Generalizing the Hough transform to detect arbitrary shapes
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Fig. 11 . Example of composite smoothing template con-
struction . (a) Convolution templates for shapes S„ S„ S, . (b)
Relationships between reference points y„ y 2 , and y, in
composite shape S. (c) Combined smoothing template h as a

function of h„ h i , and h, and y„ yi, and y, .

This strategy is biased towards finding shapes where a
large portion of the perimeter is detectable . Several
different incrementation strategies are available, de-
pending on the different quality of image data. If
shorter, very prominent parts of the perimeter are
detected, as might be the case in partially occluded
objects, then an alternative strategy of incrementing
by the gradient modulus value might be more success-
ful, i .e,

Ala) : = A(a) + g(x) .

	

(24)

Of course the two strategies can be combined, e.g .,

Ala) : = A(a) + g(x) + c

	

(25)

where c is a constant .
Another possibility is the use of local curvature

information in the incrementation function . Using this
strategy, neighboring edge pixels are examined to
calculate approximate curvature, K . This requires a
more complicated operator than the edge operators we
have considered, and complicates the table . Now along
with each value of r the corresponding values of
curvature must be stored . Then the incrementation
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Original shape

Early iterations of algorithm
emphasize global information

Fig . 12. Dynamic Hough transform.

Later iterations of algorithm
emphasize consistent local parts

weights `informative' high local curvature edge pixels
as follows :

Ala) : = A (a) + K.

	

(26)

5.1 Weighting locally consistent information
Under certain circumstances we may want to weight

local information that is consistent . For example, in
searching for the boundary of that object, a connected
set of edges conforming to the object may be more
important than a set of unconnected edges. Figure 12
shows this example . Figure 12(a) might arise in
situations with very noisy data. Figure 12(b) is an
example where an object is occluded by another object .
Wechsler and Sklansky,fet in the analytic formulation,
successfully used the related strategy of increasing the
incrementation factor if there were also neighboring
edge pixels with the same edge direction . However, we
would like to measure local consistency in parameter
space-

A simple strategy for handling this case is to
explicitly record the reference points for each edge
pixel during a first pass . Then on a second pass edge
pixels can increment by more than unity if neighboring
edge pixels are incrementing the same reference point .

A more complicated strategy is to search for con-
nected curve segments in image space which have
compatible parameters . Such an algorithm, based on
dynamic programming, is described in Ballard and
Sklansky!141 The appropriate objective function for a

In the dynamic programming algorithm, at each
iteration step we can build longer compatible curves
from all the edge points. Thus the incrementation
function for a point x would represent the longest
compatible curve from that point . (If a longer curve
cannot be built at any iteration, we can easily find this
out .)

In a parallel implementation of this algorithm the
contents of the accumulator array could be made to
vary dynamically . Initially the contents would reflect
global information, but with successive iterations the
contents would be weighted in favor of consistent,
local information .

5 .2 More complex strategies
When searching for a composite object, different

parts may have different importance . This is readily
accommodated by associating a weight w, with each
table R s , so that each entry in R s, increments by a

curve segment would be
„-,

h(x1,x2, . . .,x.)=kY g(x5)+ Y_ 4(xk,xk+t) (27)
=1

	

R=t

(28)

where

g(x 5 ) = the gradient magnitude

and

(29)
9(x5,xk+0 = 0 if I¢(KI)- W(xk-t)Imoar is

small and -oc otherwise



factor w; instead of unity .
The composite object may be searched for in a

sequential manner. Applying the table sequentially
could greatly improve the efficiency of the com-
putations by limiting areas for subsequent suitable
incrementations . Furthermore . standard me-
thodsl2 t' z al could be used to stop the process once the
shape had been located to the desired confidence level .

Even more complex strategies are possible wherein
the process is integrated into a larger system. Here
contextual information can be used to relegate all the
previous operations including (a) building composite
templates, (b) choosing weights, (c) choosing appli-
cation sequences. and (d) adjusting weights in new
contexts .

6. CONCLUSIONS

We have described a method for detecting instances
of a shape S in an image which is a generalization of the

Hough transform . This transform is a mapping from
edge space to accumulator space such that instances of
S produce local maxima in accumulator space . This
mapping is conveniently described as a table of edge-
orientation reference-point correspondence termed an
R-table. This method has the following properties.

1. Scale changes, rotations, figure-ground rever-

sals, and reference point translation of S can be
accounted for by straightforward modifications to the
R-table .

2 . Given the boundary of the shape, its R-table can
be easily constructed and requires a number of oper-
ations proportional to the number of boundary points .

3 . Shapes are stored as canonical forms ; instances
of shapes are detected by knowing the transformation
from the canonical form to the instance . If this
transformation is not known then all plausible trans-
formations must be tried .
4. If a shape S is viewed as a composite of several

subparts S, . . . S, then the generalized Hough trans-
form R-table for S can be simply constructed by
combining the R-tables for S r . . . S,, .

5 . A composite shape S may be efficiently detected
in a sequential manner by adding the R-tables for the
subparts S ; incrementally to the detection algorithm
until a desired confidence level is reached .

6. The accumulator table values can be weighted in
terms of locally consistent information.

7. The importance of a subshape S 1 may be reg-
ulated by associating a weight w ; with the R-table .

8 . Last but not least, the generalized Hough trans-
form is a parallel algorithm .

Future work will be directed towards characterizing
the computational efficiency of the algorithm and
exploring its feasibility as a model of biological
perception .
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APPENDIX. ANALYTIC ROUGH FOR PAIRS OF
EDGE POINTS

To develop an explicit version of the Hough algorithm for
ellipses using pairs of edge points, we consider the string-tied-
at-two-ends parameterization of an ellipse :
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ellipse .

(x- a) 2 + (y-b)2 + (x-c)2 + (y-d)2 = 12

where (a, b) and (c,d) are the ends and I is the length of the
string, as shown in Fig . Al . Now if we have two edge points
(x„y,) and (x 2 ,y 2) with gradients 0, and 4'2, the following
equations result :

(x, -a) 2 + (Y, -b)2 + (x, - c) 2 + (Y, -d)2 = 12

(x, - a) + (Y, -b)W, + ( x5 - c) + (Y, -d)fl, = 0

(x2-a) 2 + (y2-b)2 + ( X2 0 2 + (Y2 - d)2 = 12

(x2 -a) + (y2 -b)E2 + (x2 - c) + (y2-d)W2 = 0

where in terms of the gradient direction

rp=tan

	

n

	

dy¢-Z = dx .

From (A2) :

a, = 97,[(y, -b) + (y, - d)] + 2x, - c

Substituting in (4) :

xl - W,[(Y, - b) + (Y, - d)] - 2x,
+(y2-b)tp2 + (y2-d)rp2 + x2 = 0 .

D. H. BALLARD

(Al)

(A2)
(A3)

(A4)

Rearranging terms :

2x 2 - 2x, - 2W1 Y2 + ((P, -92)b + (tp, -(P2)d = 0 .
Now where :

S -W, - T2
and

K =2(x2 -x, -(p,Y,+rp2Y2)
and

Fig. Al. String-tied-at-both-ends parameterization of an
K
S

we have

b=t-d.

	

(A5)

Now we substitute for b in (2)

x, - a = -(x, - c) - W,(2Y, -t)
so that we have

c=q-a

	

(A6)

where n = Q•, (2y-t)

(x, - a)2 + [R - (t-d)] 2
+[xi-(7-a)]2+ (y,-d)2=12 (A7)

(x2- a)2 + [Y2 - (t - d)] 2
+[x2 - (7 -a)] 2 + (y-d)2 = 1 2

Thus our strategy for using two edge points is as follows :

Step 1 : choose a.
Step 2 : solve equations (5) and (6), a quadratic in d, ford .
Step 3 : solve equation (2) for b and equation 3 for c .
Step 4 : solve equation (1) for 1 .

Thus the vector a = (a, b, c, d, I) has been determined for a pair
of edge pixels and can be used to increment the accumulator
array.
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