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ABSTRACT

Hough has proposed an interesting and computationally efficient pro-

cedure for detecting lines in pictures. In this paper we point out that
the use of angle-radius rather than s lope-intercept parameters simplifies

the computation further. We also show how the method can be used for more

general curve fi tting, and give alternative interpretations that explain

the source of its efficiency.
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The normal parameters for a line.

Projection of co Ii near points onto a line.

An illustrative example.



I. INTRODUCTION

A recurring problem in computer picture processing is the detec-

tion of straight lines in digitized images. In the simplest case, the
picture contains a number of discrete, black figure points lying on a

whi te background. The problem is to detect the presence of groups of

colinear or almost colinear figure points. It is clear that the problem

can be solved to any des ired degree of accuracy by testing the lines

formed by all pairs of points. However, the computation required for n

points is approximately proportional to n , and may be prohibitive for

large n.

Rosenfeld rlJ has described an - ngenious method due to Hough (2J for
replacing the original problem of finding colinear points by a mathemati-

cally equivalent problem of finding concurrent lines. This method involves
transforming each of the figure points into a straight line in a parameter

space The parameter space is defined by the parametric representation

used to describe lines in the picture plane. Hough chose to use the

familiar slope-intercept parameters, and thus his parameter space was

the two-dimensional slope-intercept plane. Unfortunately, both the slope

and the intercept are unbounded, which complicates the application of the

technique. In this note we suggest an alternative parametrization that

eliminates this problem. We also give two al ternati ve interpretations of

Hough' s method, one of which reveals plainly the source of its efficiency.
Finally, we show how the method can be extended to find more general

classes of curves in pictures.



I I . FUNDAMNT ALS

The set of all straight lines in the picture plane cons t i tutes 

two-parameter family. If we fix a parametrization for the family, then

an arbitrary straight line can be represented by a single point in the

parameter space. For reasons that become obvious , we prefer the so-called

normal parametrization. As illustrated in Fig. I , this parametrization

specifies a straight line by the angle 8 of its normal and its algebraic

distance p from the origin. The equation of a line corresponding to this

geomet ry is

x cos 8 + y sin e = 

If we restrict 8 to the interval CO , TI), then the normal parameters for a

line are unique. With this res triction, every line in the x-y plane

corresponds to a unique point in the 8- p plane.

Suppose, now, that we have some set t (X l 'Y )' ..., (x ) J of 
figure points and we want to find a set of straight lines that fit them.

We transform the. -points (x

. ,y.

) into the sinusoidal curves in the e-1. 
plane defined by

p = x . cos e + Y. sin e1. (1)

It is easy to show that the curves corresponding to colinear figure

points have a common point of intersection. This point in the 8 -p plane,

say (8 O,p 0)' defines the line passing through the colinear points. Thus,

the problem of detecting colinear points can be converted to the problem

of finding concurrent curves.
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A dual property of the pOint-to-curve transformation can also be

established. Suppose we have a setf(e
l,P )' ..., (e )J of points in

the e -p plane, all lying on the curve

P = xo cos e + yO sin e

Then it is easy to show that all these points correspond to lines in the

y plane passing through the point (x
o,y 0

)' 

We can sumarize these

interesting properties of the pOint-to-curve transformation as follows:

I. A point in the picture plane corresponds to a sinusoidal

curve in the parameter plane.

2. A point in the parameter plane corresponds to a straight

line in the picture plane.

3. Points lying on the same straight line in the picture

plane correspond to curves through a common point in the

parameter plane.

4. Point s lying on the same curve in the parameter plane

correspond to lines through the same point in the picture

plane.

In the next section we apply these resul ts to the problem

of detecting colinear points in the picture plane and show how
significant computational economies can be realized in certain situations.

III. APPLICATION', AWJ ALTERNATIVE INTERPRETATIONS

Suppose that we map all of the points in the picture plane into their

corresponding curves in the parameter plane. In general , these n curves will

intersect in n(n - 1)/2 points corresponding to the lines between all pairs



of figure points. Exactly colinear subsets of figure points can be found

at least in principle, by finding coincident points of intersection in

the parameter plane. Unfortunately, this approach is essentially exhaus-

tive, and the computation required grows quadratically with the number of

picture points.

When it is not necessary to determine the lines exact ly, the computa-

tional burden can be reduced considerably. Following Hough' s basic pro-

pos aI, we specify the acceptable error in e and p and quantize the e-

plane into a quadruled grid. This quantization can be confined to the

region 0 , - R , where R is the size of the retina, since

points outside this rectangle correspond to lines in the picture plane that

do not cross the retina. The quantized region is treated as a two-dimensional

array of accumulators. For each point (x

., y .

) in the picture plane, the1. 
corresponding curve given by (I) is entered in the array by incrementing

the count in each cell along the curve. Thus , a given cell in the two-

dimensional accumulator eventually records the total number of curves passing

through it. After all figure points have been treated, the array is inspected
to find cells having high counts. If the count in a given cell (e., p . ) is k

1. J

then precisely k figure points lie (to within quantization error) along the
line whose normal parameters are (6., p .

) .

1. J

An alternative interpretation of the pOint-curve transformation

can be obtained by recognizing that the p computed by (I),

p = x. cos e + y. sin e1. (I)



locates the projection of the point (x

,y.

) onto a line through the1. 
origin wi th slope angle 6. Thus, if a number of figure points lie close

to some line t, their projections onto the line normal to are nearly

coincident (see Fig 2). A given colum in the e-p accumulator array

is just a histogram for these projections, so a high count in a

gi ven cell clearly corresponds to a nearly colinear subset of figure

points. A variation of this approach was used by Griffith (3) to find long

lines in a picture.

Let us investigate how the computation required by the accumulator

implementation varies with the number of figure points. To be more speci-
fie about the quantization, suppose that we restrict our attention to d

values of e uniformly spaced in the interval (0 , TI). Suppose further that

the p axis in the interval r -R, RJ is quantized into d
2 cells. 

For each

figure point (x

., y . ), 

we use (I) to compute the d different values of 1. 
corresponding to the d

l possible values of the independent variable 

Since there are n figure points , we need to carry out this computation

l times. When 
these computations are complete, the d

2 cells of the

two-dimensional accumulator are inspected to find high counts. Thus , the

computation required grows linearly with the number of figure points.

Clearly, when n is large compared to d
l' this approach is preferable to

an exhaustive procedure that requires considering the lines between all

n(n - 1)/2 pairs of figure points.
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Another alternative interpretation exposes the source of this

efficiency. Consider again Property 4 of .the last section: Points

lying on the same curve in the e -p plane correspond to lines through the

same point in the picture plane. When the curve corresponding to figure

point (x. ,y. ) is "added " to the accumulator, we are really computing and

recording the parameters of the d
l lines in the picture plane passing

through (x.

, y .

) and, because e is quantized, these are all the lines in

the plane" passing through (x

. ,y. ). 

Should a given parameter pair ever

recur as a result of computing the d
l lines through some other figure point,

the recurrence will be reflected in an increased count in the appropriate

accumulator cell. Roughly speaking, then, for each figure point the quan-

tized transform method considers only the set of all d
l lines through that

point , whereas more exhaustive methods consider all (n - 1) lines between

the given point and all other figure points.

I V . EXALE

The following example illustrates some of the features of the

transform approach. Fig. 3 (a) shows a television monitor view of a box

and Fig. 3(b) shows a digitized version of that view. A simple differ-

encing operation locates significant intensity changes and produces the

binary picture shown in Fig. 3 (c) . This l20-by-120 picture contains many

nearly colinear figure points that can be fit well by a few straight lines.

Sampling 8 at d
l = 9 

-increments in 8 and , quantizing p into

2 = 86 two-element cells
, we obtain the two-dimensional accumulator array

shown in Table I. If the array entry at (8
0' P

) is k
O' then kO figure



points lie on parallel lines for which 8 = 8
0 and 

p lies between PO and

o + 2. 
When many points are nearly colinear, the entry for the line that

fits them best is large. The largest entry in the table occurs at -5)

and corresponds to the middle vert ical edge of the box. The nine circled

entries in Table I correspond to locally maximum values that exceed the

arbi trary threshold of 35. The corresponding nine groups of nearly colinear
figure points are shown in Fig. 3(d). In this example , it happens that every
group corresponds to some physically meaningful line in the picture. However

two signif icant lines on the top of the box were not found , one because it

contained very few points and the other because it fell between the lines

at e = 80 and e = 100 The 20 angular quantization interval was chosen

to keep the accumulator array small. Clearly, we were fortunate to have
found as many lines as we did, and a smaller _quantization intexval- -wou11,

.-.-. - _ - .

c::-..

.. .:-

have to be used in pr.acti(r

. - - --

A few remarks concerning some limitations of the transform approach

are in order. First , the results are sensitive to the quantization of

both e and 

p. 

Finer quantization gives better resolution , but increases

the computation time and exposes the problem of clustering entries corres-

ponding to nearly colinear points. Second , the technique finds colinear

points without regard to contiguity. Thus, the position of a best-fit line

can be distorted by the presence of unrelated figure points in another part

of the picture. A related problem is that of meaningless groups of colinear

points being detected. In our example , a false line would be detected if

the threshold were reduced from 35 to 24 , the value needed to detect the top

left -hand edge of the box.
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TABLE I ACCUMUATOR ARRAY FOR FIG. 3 ( c)





Index Terms

Picture processing, pattern recognition, line detection.



An important special use of the transform method is to detect

the occurrence of figure points lying on a straight line and possessing

some specified property. For example , suppose we want to find whether

a significant number of figure points lie on a line through the point

O' Y
) in the picture plane. As we have seen from Property 4 , the

normal coordinates of any such line must lie on (or, in practice , at

least near) the curve p = X
o cos 6 + YO sin e. Hence , the transform

process can be carried out in the usual way, but a ttent ion can be re-

stricted to the region of the 6-p plane near this curve. If we find a

cell with count k near this curve , then we are assured that k figure

points lie on a line passing (nearly) through the point (x
O' y

). 

Sim-

ilarly, suppose we are interested only in lines having a given direction

say 6 . Again , we carry out the process in the usual way, but restrict

our attention to a subset of the 6-p plane in the vicinity of 6 = 6

It is clear that the general transform approach can be extended to

curves other than straight lines. For example , suppose we want a method
to detect circular configurations of figure points. We can choose a para-
metric representation for the family of all circles (within a retina) and

transform each figure point in the obvious way. If , as a parametric rep-
resentat ion , we describe a circle in the picture plane by

(x - a) 

+ (y - 

= c

then an arbitrary figure point (x ,Y. will be transformed into 1. 
surface in the a-b-c parameter space defined by

(x. - a) 2 + (y. - b) 2 = c1. 



In this example , then , each figure point wil1 be transformed int0 a right cir-

cular cone in a three-dimensional parameter space. If the cones corres-
ponding to many figure points intersect at a single point , say the point

o' b O' c
), then all the figure points lie on the circle defined by those

three parameters. As in the preceding case of straight lines , no saving is

effected if the entire process is performed analytically. However

the process can be implemented efficiently by using a three-dimensional

array of accumulators representing the three-dimensional parameter space.

In principle , then, the transform method extends to arbi trary curves.

We need only pick a convenient parametrization for the family of curves o

interest and then proceed in the obvious way. A parametrization having

bounded parameters is obvious ly preferable , al though this is not essential.

It is much more important to have a small number of parameters , since the

accumulator implementation requires quantization of the entire parameter

space, and the computation grows exponentially with the number of parameters.
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