COMPRESSIVE SAMPLING

A sensing/sampling paradigm that goes against
the common knowledge in data acquisition
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INTRODUCTION

Sampling: “ Analog Girl in a Digital World...”

Judy Gorman 99
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DSP revolution: sample then process



Data Acquisition

Shannon-Nyquist Sampling Theorem :
“No information loss if we sample at 2x the bandwidth”

Ideal

sampling
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“Success has many fathers ...”
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Data Acquisition

Pressure is on Digital Sensors

e Success of digital data acquisition is placing increasing pressure
on signal/image processing hardware and software to support

higher resolution / denser sampling
» ADCs, cameras, imaging systems, microarrays, ...
X

large numbers of sensors

» image data bases, camera arrays,
distributed wireless sensor networks, ...

X
increasing numbers of modalities

» acoustic, RF, visual, IR, UV
deluge of data

» how to acquire, store, fuse,
process efficiently?




Data Acquisition

Trends (demands):

- faster sampling W“U

- larger dynamic range
. . . time
- higher-dimensional data

- lower energy consumption

- new sensing modalities

space



Old-fashioned Thinking

Long-established paradigm for digital data acquisition
- uniformly sample data at Nyquist rate (2x Fourier bandwidth)
- compress data

N>K
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Old-fashioned Thinking

What's Wrong with this Picture?

Why go to all the work to acquire
N samples only to discard all but
K pieces of data?

N>K

N K .
X — sample Jcompress — transmit/store

JPEG
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Shannon sampling theorem
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Old-fashioned Thinking

= Waste the imaging time, imaging sensors,
and powerl

= Especially for on-board cameras in
satellites for large-scale remote sensing.

The same problem for...

= Remote sensing

= CT, MRI




COMPRESSIVE SAMPLING
Makes Every Pixel Count

CS THEORY ASSERTS THAT ONE CAN
RECOVER CERTAIN SIGNALS AND
IMAGES FROM FAR FEWER SAMPLES
OR MEASUREMENTS THAN
TRADITIONAL METHODS USE.

A precursor of compressed sensing was seen in the 1970s, when seismologists
constructed images of reflective layers within the earth based on data that did
not seem to satisfy the Nyquist-Shannon criterion : “Sparse Spike Train
Hypothesis”.

The ideas behind compressive sensing came together in 2004 when Emmanuel
J. Candes, a mathematician at Caltech, was working on a problem in
magnetic resonance imaging. He discovered that a test image could be
reconstructed exactly even with data deemed insufficient by the Nyquist-
Shannon criterion.




COMPRESSIVE SAMPLING
Makes Every Pixel Count
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COMPRESSIVE SAMPLING
Makes Every Pixel Count

e Directly acquire “compressed” data

¢ Replace samples by more general "measurements”
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COMPRESSIVE SAMPLING
Makes Every Pixel Count

CS relies on two principles:
Sparsity, which pertains to the signals of interest, and
Incoherence, which pertains to the sensing modality.

Candes and Tao argue that compressive sensing is based on a Kind of
uncertainty principle, where the spectrum of the signal and that of the
measuring instrument have complementary roles.

The traditional sensing strateqy takes sharply focused samples; it’s like
hunting with a spear. This works well when the signal is spread out over a
broad domain.

But when the signal itself is highly structured and narrowly focused, the
better plan is to spread the measurements out over the domain—to hunt
with a net rather than a spear.




COMPRESSIVE SAMPLING

Technical
Mathematically
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COMPRESSIVE SAMPLING
Technical

Fundamental problem

= Finding sparse solutions to the
underdetermined inverse problems.

= Recover the original data from a few linear
measurements.



BN

COMPRESSIVE SAMPLING
Technical

If X is compressible

y= PP+ e

(b)



COMPRESSIVE SAMPLING
Technical

CS theory requires three aspects

1. The desired signals/images are compressible

2. CS matrix satisfies RIP (restricted isometry
property): noise-like incoherent

3. Nonlinear recovery algorithm



1. Compressibility

MANY NATURAL SIGNALS ARE

SPARSE OR COMPRESSIBLE IN THE = Transform sparse
SENSE THAT THEY HAVE CONCISE

REPRESENTATIONS WHEN
EXPRESSED IN THE PROPER BASIS. —

= gpatial sparse

K<LN
large
wavelet
coefficients




2. RIP condition

= What are good CS matrices? how many
measurements are required for successful
reconstruction?

= RIP: a sufficient condition (E. Candes, T.
Tao)

Let A be an m = pmatrix and let 5 < p be an integer. Suppose that there exists a constant 0. such that,

for every m = 5 submatrix As of 4 and for every vector y,

2 2 2
(1—4dy) HUHF;; < || Ay Hf’;:; < (1+4) ”y“f’z*
Then, the matrix 4 is said to satisfy the s-restricted isometry property with restricted isometry constant

Os.

In linear algebra, the restricted isometry property characterizes matrices
which are nearly orthonormal, at least when operating on sparse vectors.
The concept was introduced by Candes and Tao[1] and is used to prove
many theorems in the field of compressed sensing.[2]




2. RIP condition
How to construct the CS matrices

= A basic rule: CS matrix should be incoherent in the
sparse transform domain.

The coherence between the sensing basis @ and the representa-
tion basis W is

w(®, W) = n- max |(gg. V).

1<k, j<n

w(d, W) € [1. /n]



2. RIP condition

How to construct the CS matrices

= The greater incoherence of the measurement / sparsity
pair (4, &), the small measurements needed.

Fix £ e R™ and suppose that the coefficient sequence x of £ in
the basis W is S-sparse. Select m measurements in the &
domain uniformly at random. Then if

m>C-u?(@. v)-S-logn

One suffers no information loss by measuring just
about any set of m coefficients which may be far less than
the signal size apparently demands. If p(d, &) is equal or

close to one, then on the order of Slogn samples suffice
instead of n.



2. RIP condition

How to construct the CS matrices

The signal f can be exactly recovered from our con-
densed data set by minimizing a convex functional which
does not assume any knowledge about the number of
nonzero coordinates of x, their locations, or their ampli-
tudes which we assume are all completely unknown a pri-
ori. We just run the algorithm and if the signal happens to
be sufficiently sparse, exact recovery occurs.

= Random matrices: Gaussian, random partial orthogonal
matrices.

= How to construct deterministic and explicit CS matrices
Is open? [DeVore,Indyk]



3. Recovery algorithms

There are two feasible ways to recover the data :

e Matching pursuit: locate a wavelet whose sighature seems to correlate with
the data collected; remove all traces of that signature from the data; and
repeat until we have totally "explained” the data collected in terms of
wavelet signatures.

e Basis pursuit (or ' minimisation): Out of all the possible combinations of
wavelets which would fit the data collected, find the one which is "sparsest”
in the sense that the total sum of the magnitudes of all the coefficients is as
small as possible. (It turns out that this particular minimisation tends to
force most of the coefficients to vanish.) This type of minimisation can be
computed in reasonable time via convex optimisation methods such as the
simplex method.



3. Recovery algorithms

= LP (linear programming), reweighted LP
[Candes et al ]

Finding the candidate with the smallest L, norm can be
expressed relatively easily as a linear program, for which
efficient solution methods already exist.

® Minimum ¢q norm reconstruction:
Surprisingly, optimization based on
the £1 norm

s = argmin ||s'[|; such that ®s' =y



3. Recovery algorithms

= Greedy/OMP (orthogonal matching pursuit)
StOMP( stagewise OMP) [Tropp, Donoho, et al ]

= GRSP( gradient projection sparse
reconstruction) [Figueiredo et al.]

= |terative thresholding [Daubechies, Starck, et al]



3. Recovery algorithms

lterative curvelet thresholding

Tpi1 = Sp(x, + &' (y — day), V).




Some Applications

Single-pixel imaging

Objects andom measurements

Sensor § <

Lens

/ Lens
Mirrors (DMD)
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Some Applications
Single-pixel imaging

Signal is local, measurements are global. Each
measurement picks up a little information about each component.

Yi

Y2

Y3

= Single-pixel/sensor but multi-times (SPMT)
imaging



Some Applications

Compressive Imaging: A New Single-Pixel Camera

Richard Baraniuk et al., Rice University, 2006

Low-cost, fast, sensitive
optical detection

Compressed, encoded
image data sent via RF
Image encoded by DMD for reconstruction

and random basis

DSP

http://www.dsp.ece.rice.edu/cscamera

http://www.dsp.ece.rice.edu/cscameral/inthenews

http://www.tempointeraktif.com/hqg/it/2006/10/05/brk,20061005-85452.id.html




Some Applications

Compressive Imaging: A New Single-Pixel Camera

DMD+ALP Board

Photodlioda clrcult




Some Applications

Compressive Imaging: A New Single-Pixel Camera

RESULTS

16384 Pixels 16384 Pixels
Original 1600 Measurements 3300 Measurements
{10%) (Z0%)

65536 Pinels 65536 Pinels

1300 Measuremen ts 3300 Measuremen ts
{29%) {59}



Some Applications

Compressive Imaging: A New Single-Pixel Camera

RESULTS

4096 Pixels 4096 Pixels 65536 Pixels

Original 800 Measurements 1600 Measurements 6600 Measurements
(Z20%) (40%) (10%)



Some Applications

Compressive Imaging: A New Single-Pixel Camera

RESULTS
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Some Applications

Compressive Imaging: A New Single-Pixel Camera

RESULTS

£

4096 Pixels 4096 Pixels
800 Measurements 1600 Measurements
(Z0%) (40%0)

Original
Dbject



Some Applications

Recover from incomplete Fourier
measurement

Another area where compressive sensing has promise is magnetic resonance
imaging—where the whole story began. The imperative in MRI is not so much
compressing data for storage but acquiring it quickly, because the patient
must hold still while an image is formed. Ordinary after-the-fact compression
is no help in this respect, but compressive sensing offers hope of faster
scanning without loss of resolution or contrast.

= For random Fourier measurement (e.g.,
MRI in medical imaging), we only need

O(S -log(N/S))
for S-sparse N x N Images.



Some Applications

Recover from incomplete Fourier
measurement

= Multi-pixel but one-times (MPOT) imaging.

The measurements take a trade-off
between the space and time.




Some Applications
Angiography

'

Random
Under-Sampling
SPARSE (TV)

Low Resolution
Under-Sampling 4

An angiogram. From bottom to top, the angiogram is progressively undersampled by larger

and larger factors. With a Shannon-Nyquist sampling strategy, the image degrades as the degree of
undersampling increases. With compressed sensing, the image remains very crisp even at 20-fold un-
dersampling. The approach used here and in Figure 5 is not [ -minimization but l; -minimization of the

spatial gradient.




Some Applications

Significance for satellite remote
sensing

= On-board encoding: compressed sensing

= Off-line decoding: iterative thresholding

Shift the imaging cost to off-line computational cost




Some Applications

25% measurements in remote
sensing

SNR = 38.80 dB
. T

Wavelet-TV



Some Applications

25% measurements in remote
sensing

SNR = 39.54 dB

Iterative curvelet thresholding



Some Applications
25% measurements

SNR

Iteration

| L 1 L 1 L 1
£ £ = an £3 w0

SNR 39. 11 cIB

Wavelet-TV [Lustig et al.] Iterative curvelet thresholding




Other Applications

Jianwel Ma and Francois-Xavier Le Dimet, Deblurring from highly
Incomplete measurements for remote sensing. (IEEE Trans. Geoscience and
Remote Sensing, 47 (3), 792-802, 2009).

H. Jung, J. C. Ye, Performance evalution of accelerated functional MRI
acquisition using compressed sensing. (Proc. IEEE International Symposium
on Biomedical Imaging (ISBI), pp. 702-705, June 28-July 1, 2009, Boston,
USA).

J. Provost, F. Lesage, The application of compressed sensing for photo-
acoustic tomography. (IEEE Trans Med Imaging, 28(4):585-94, April
2009).

For more papers about CS :

http://www.dsp.ece.rice.edu/cs



Open Problems

= How to build the optimal measurement
matrix?

= How to construct the optimal recovery
algorithm?
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