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Background

* Fundamental Question : Parsimonious Representation of Visual Information

 Mathematical Foundation: Sparse Representations

Fourier, Wavelets... = construction of bases for signal expansions:

f= E Cnn, where Cn = “:fa l'n}

Non-linear approximation:

far = Z Cnln, where Iy : indexes of biggest M coefficients.
nel g

Sparse representation: How fast || f — ﬁw” —0as M —
(e.g. || f— ful2<CM— ™).



The Success of Wavelets

e Wavelets provide a sparse representation for piecewise smooth signals.
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e Multiresolution, tree structures, fast transforms and algorithms, etc.

e Unifying theory = fruitful interaction between different fields.



The Success of Wavelets

Fourier vs. Wavelets

Non-linear approximation: N = 1024 data samples; keep M = 128
coefficients

Original
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Using Fourier (of size 1024): SNR = 22.03 dB
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Using wavelets (Daubechies—4): SNR = 37.67 dB
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The Success of Wavelets

Is This the End of the Story?

Photo: llya Pollak



The Fallure of Wavelets

1D discontinuity (Wavelet fails)

* In 1-D: Wavelets are well adapted to abrupt changes or
singularities.

* In 2-D: Separable wavelets are well adapted to point-singularities

(only).
But, there are (mostly) line- and curved-singularities...




“Wish List” for New Image
Representations

Multiresolution ... successive refinement
Localization ... both space and frequency
Critical sampling ... correct joint sampling
Directionality ... more directions
Anisotropy ... more shapes

Our emphasis is on discrete framework that leads to
algorithmic implementations.



Edges — discontinuities across
curves

Synthesis: edge location is known In
advance, representation adapted
respectively;

Analysis: edge location Is unknown; two
approaches arise:

o Adaptive (Lagrangian representation —
constructed using the full knowledge of
the structure and adapting to the
structure perfectly);

 Non-adaptive (Eulerian — fixed,
constructed once and for all).



surprise:

Despite common belief that adaptive
representation is essentially more powerful than
fixed non-adaptive, It turns out that there is a
fixed non-adaptive technique essentially as good
as adaptive representation from the point of view

of asymptotic m-term approximation errors.



Why do we need curvelet?

The comparing of the approximation using the best
m nonzero terms
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1] Wavelet failed in the presence of curve discontinuity.
1J Adaptive methods are ideal but difficult to implement.

1] Non-adaptive methods (curvelet) can represent the ideal behavior of
an adaptive representation.



Development History of Curvelet

1998, Ridgelets, Dr. Candes.
1999, Curvelet 99, Dr. Candes and Dr. Donoho.
2002, second generation curvelets.

2002-present Curvelet.org, Fast discrete curvelet transform,
Curvelab, 3D Discrete Curvelet Transform. ,



Comparison to Fourier & Wavelet

< 1807, 1.B. Fourier:

% All periodic functions can be expressed as a weighted sum of
trigonometric function

% Denied publication by Lagrange, Legendre and Laplace
% 1822: Fourier’s work is finally published

Lo
Lo
S
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% 1965, Coolev & Tukey: Fast Fourier Transform

143 years




Comparison to Fourier & Wavelet

m 1911: Haar

m 1930: Littlewood Paley

m 1940: Gabor

m 1960: Calderon-Zygmund

1980°s beginnings of wavelets in physics, vision,
speech processing (ad hoc)

... little theory ... why/when do wavelets work?
1986 Mallat unified the above work

1985 Morlet & Grossman continuous wavelet
transform ... asking: how can you get perfect
reconstruction without redundancy?



Comparison to Fourier & Wavelet

« 1985 Meyer tried to prove that no orthogonal wavelet
other than Haar exists, found one by trial and error!

» 1987 Mallat developed multiresolution theory, DWT,
wavelet construction techniques (but still
noncompact)

« 1988 Daubechies added theory: found compact,
orthogonal wavelets with arbitrary number of

vanishing moments!

m 1990: biorthogonal wavelets

« 1990’s: wavelets took off, attracting both
theoreticians and engineers

m 1994: second generation wavelets
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Comparison of Curvelet & Wavelet
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Curvelet Transform
Technical

The Curvelet Transform includes four stages:
Sub-band decomposition
Smooth partitioning
Renormalization

Ridgelet analysis



Sub-band
Decomposition

f > (Pyf,A f,A,..)

P, — Low-pass filter.
A, A,, ... — Band-pass (high-pass) filters.







Smooth Partitioning

 Let w be a smooth windowing function with ‘main’ support of
size 2x27%. For each square, wy, Is a displacement of w localized
near Q.

*Multiplying A, f with w, (VQeQ;) produces a smooth
dissection of the function into ‘squares’.

hg =W - A f

Example:
An indicator of the dyadic square

(but not smooth!!). n

Smooth window function with
an extended compact support:



Renormalization

 Renormalization Is centering each dyadic
square to the unit square [0,1]x[0,1].

* For each Q, the operator T, Is defined as:
(To £ )(x, %)= 2° £(2° %, —k;, 2%, —k, )

e Each square Is renormalized:

Jo = TQ_th



Ridgelet Analysis

e Each normalized square Is analyzed in the
ridgelet system:

X(Q.) :<9Q’pz>

— The ridge fragment has an aspect ratio
of 2-25x2-s.

— After the renormalization, it has localized
frequency in band |g|e[23, 25*1].

— A ridge fragment needs only a very few ridgelet
coefficients to represent it.



INVERSE CURVELET TRANSFORM

Ridgelet Synthesis:

Og =D _%on) P
Renormalization: :

Ny =To0q
Smooth Integration:

Af=>w,-h,

Sub-band Recomposition: “™

f =R (R f)+> A, f)



FAST DISCRETE CURVELET TRANSFORM
(FDCVT)

Suggests two algorithmic strategies, Unequi-Spaced Fast
Fourier Transform (USFFT) based and Freguency
wrapping based FDCVT.

CurvelLab Toolbox

IS a collection of Matlab and C++ programs for
the Fast Discrete Curvelet Transform in two and three
dimensions.



Some Paper About Curvelet Application

1. Vehicle Recognition Based on Fourier, Wavelet and
Curvelet Transforms - a Comparative Study, 2007.

The classifier used in this paper is called k nearest-neighbor.

Table 1.The recognition rates with different lengths of 3 various feature vectors.

Number of features | All coefficients (FFT=16384. 13130 10000 | 9000 | 8000 | 6000

coefficients .

( ) Wavelet=16384. curvelet=119449)

Recognition  rate | 97% 90% 87% 85% 85% 70%
using FFT

Recognition  rate | 92% 89% 89% 87% | 90% 85%

using Wavelet

Recognition  rate | 100% 100% 97% 97% | 95% | 95%
using Curvelet

During the next works, we will use of the other classifiers
to Improve our system recognition rate.



2. Curvelet-based Image Compression with SPIHT, 2007.
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The future work will be on integration of some other
encoding techniques with curvelets to analyze the effect on
compression ratio and PSNR of the input image.




3. DENOISING OF COMPUTER TOMOGRAPHY IMAGES
USING CURVELET TRANSFORM, 2007

PSNR
Mean Standard Deviation

Noise

CvT WT CvT WT
Randomn noise 17.27 14.14 2.81 1.17
Gaussian noise 15.16 13.12 1.03 091
Salt & Pepper 14.43 16.05 0.62 0.06
noise
Speckle noise 19.65 39.55 21.12 7.06

In all cases it was found that the Curvelet
transform outperforms the Wavelet transform in terms of
PSNR and the Curvelet denoised images appear visually
more pleasant than the Wavelet denoised images.

The Curvelet transform does not effectively
remove the Salt and Pepper noise and Speckle noise from
the medical images. and so Curvelet transform 1s not suited
for removal of these two noises though it recovers the
curves and edges perfectly.



dB Value

Image Compression Using Curvelet, Ridgelet and Wavelet
Transform,A Comparative Study, 2008
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Curvelet Transform gives the best performance for PSNR for the files F2, F4
clearly. The quantitative PSNR values in case of Ridgelet Transform are
better in case of a few images. But the subjective visual inspection shows
that the Curvelet is the best for Compression out of all three transforms.




e Join in to update information and
knowledge about the current researches in curvelet.
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