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BackgroundBackground
• Fundamental Question : Parsimonious Representation of Visual Information

• Mathematical Foundation: Sparse Representations
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The Failure of WaveletsThe Failure of Wavelets
1D discontinuity (Wavelet fails)

• In 1-D: Wavelets are well adapted to abrupt changes or 
singularities.

• In 2-D: Separable wavelets are well adapted to point-singularities 
(only).
But, there are (mostly) line- and curved-singularities...



“Wish List” for New Image “Wish List” for New Image 
RepresentationsRepresentations



Edges – discontinuities across 
curves

Synthesis: edge location is known in 
advance, representation adapted 
respectively;
Analysis: edge location is unknown; two 
approaches arise: 

• Adaptive (Lagrangian representation –
constructed using the full knowledge of 
the structure and adapting to the 
structure perfectly);

• Non-adaptive (Eulerian – fixed, 
constructed once and for all).



Surprise:Surprise:

Despite common belief that adaptive 
representation is essentially more powerful than 

fixed non-adaptive, it turns out that there is a 
fixed non-adaptive technique essentially as good 
as adaptive representation from the point of view 
of asymptotic m-term approximation errors. [1]



Why do we need curvelet?

�� Wavelet failed in the presence of curve discontinuity.

��Adaptive methods are ideal but difficult to implement. 

�� Non-adaptive methods (curvelet) can represent the ideal behavior of   
an adaptive representation.



Development History of Curvelet

• 1998, Ridgelets, Dr. Candès. [2], [3]

• 1999, Curvelet 99, Dr. Candès and Dr. Donoho. [1], [4]

• 2002, second generation curvelets. [5]

• 2002-present Curvelet.org, Fast discrete curvelet transform,  
Curvelab, 3D Discrete Curvelet Transform.[6],[7],[8].
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Comparison to Fourier & Wavelet
STFT/Gabor                       Wavelet

Curvelet



Comparison of Curvelet & Wavelet



Curvelet Transform
Technical

The Curvelet Transform includes four stages:

Sub-band decomposition

Smooth partitioning

Renormalization

Ridgelet analysis



SubSub--band band 
DecompositionDecomposition
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P0 – Low-pass filter.
1, 2, … – Band-pass (high-pass) filters.



Smooth PartitioningSmooth Partitioning



SmoothSmooth PartitioningPartitioning
• Let w be a smooth windowing function with ‘main’ support of  
size 2-s2-s. For each square, wQ is a displacement of w localized 
near Q.

•Multiplying s f with wQ (QQs) produces a smooth 
dissection of the function into ‘squares’.

fwh sQQ 

Example:
An indicator of the dyadic square 
(but not smooth!!).
Smooth window function with 
an extended compact support:



RenormalizationRenormalization

• Renormalization is centering each dyadic 
square to the unit square [0,1][0,1].

• For each Q, the operator TQ is defined as:

• Each square is renormalized:
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RidgeletRidgelet AnalysisAnalysis

• Each normalized square is analyzed in the 
ridgelet system:

– The ridge fragment has an aspect ratio 
of 2-2s2-s. 

– After the renormalization, it has localized 
frequency in band ||[2s, 2s+1].

– A ridge fragment needs only a very few ridgelet 
coefficients to represent it.

  λQQ,λ ρgα ,



INVERSE CURVELET  TRANSFORMINVERSE CURVELET  TRANSFORM

• Ridgelet Synthesis:

• Renormalization:

• Smooth Integration:

• Sub-band Recomposition:
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FAST DISCRETE CURVELET TRANSFORMFAST DISCRETE CURVELET TRANSFORM
((FDCvTFDCvT))

Suggests two algorithmic strategies, Unequi-Spaced Fast 
Fourier Transform (USFFT) based and Frequency 
wrapping based FDCvT.[7]

CurveLab Toolbox
CurveLab is a collection of Matlab and C++ programs for 
the Fast Discrete Curvelet Transform in two and three 
dimensions. [9]



Some Paper About Some Paper About CurveletCurvelet ApplicationApplication

1. Vehicle Recognition Based on Fourier, Wavelet and
Curvelet Transforms - a Comparative Study, 2007. [10]

The classifier used in this paper is called k nearest-neighbor.



2. Curvelet-based Image Compression with SPIHT, 2007. [11]



3. DENOISING OF COMPUTER TOMOGRAPHY IMAGES 
USING CURVELET TRANSFORM, 2007 [12]

PSNR



4. Image Compression Using Curvelet, Ridgelet and Wavelet 
Transform,A Comparative Study, 2008 [13]

Curvelet Transform gives the best performance for PSNR for the files F2, F4 
clearly. The quantitative PSNR values in case of Ridgelet Transform are 
better in case of a few images. But the subjective visual inspection shows 
that the Curvelet is the best for Compression out of all three transforms. 



• Join in Curvelet mailing-list to update information and 
knowledge about the current researches in curvelet.
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