People Innovation Excellence
 

Intel’s New Path to Quantum Computing

Intel’s director of quantum hardware, Jim Clarke, explains the company’s two quantum computing technologies

Despite a comparatively late start, Intel is progressing quickly along the road to a useful quantum computer. The company’s director of quantum hardware, Jim Clarke, came by IEEE Spectrum’s offices on 9 May to prove it. He brought with him samples of two technologies that show why the chip fabrication powerhouse can make a unique contribution to the quest for exponentially-faster computing. The first was a Tangle Lake, a specially packaged chip containing 49-superconducting qubits that Intel CEO Brian Krzanich, showed off at CES in January. The other was something new: a full silicon wafer of test chips, each containing up to 26-qubits that rely on the spins of individual electrons. The first of these wafers arrived at Delft University of Technology, in The Netherlands, that day for testing. Clarke’s group can make 5 such wafers per week, meaning that Intel has probably now made more qubit “devices than have ever been made in the world of quantum computing.”

Jim Clarke on…

IEEE Spectrum: What’s special about Tangle Lake?

Jim Clarke: I can’t underscore, for these systems, how important the packaging is. Typically we make our computers to run at room temperature, in our back pocket or on our wrist or slightly higher temperatures, but never at a fraction of a degree above absolute zero [as you need for superconducting qubits]. So these guys developed a package that could withstand the temperatures mechanically and still be relatively clean from a signal perspective.

IEEE Spectrum: Is there a limit to the density of qubits using the technology in Tangle Lake? Those pinouts look pretty big.

Clarke: I think already this is the largest chip-to-[printed circuit board] attachment that Intel has ever done. So any larger than this on a single piece—the coefficient of thermal expansion and shrinkage would be severe. Not only that, as you see, the actual connectors have a very large footprint, and those are important right now.

We can go bigger (more qubits per chip) with this technology, but not by much. So, what we’ll do is work to make the qubits smaller and the connections smaller. And so, within the same size footprint, we can maybe increase the number of qubits by several factors. But it’s hard to reach a place with that technology where you’d have the millions of qubits you would need to do something really life altering.

IEEE Spectrum: So how do you get to millions of qubits?

Clarke: I can see a path with this technology to perhaps 1000. Beyond that, I think you have to get creative. That’s one of the reasons that we’re working on multiple qubit technologies. When we spoke in the fall, we were talking almost exclusively about the superconducting chips. But we’re actually working on two technologies. One’s a bit further along—that’s the superconducting. They each have pluses and minuses. For example, the size of the qubits in this other type, called a silicon spin qubit, is a million times smaller. So that would be one possible benefit. [READ MORE]


Published at :
Leave Your Footprint

    Periksa Browser Anda

    Check Your Browser

    Situs ini tidak lagi mendukung penggunaan browser dengan teknologi tertinggal.

    Apabila Anda melihat pesan ini, berarti Anda masih menggunakan browser Internet Explorer seri 8 / 7 / 6 / ...

    Sebagai informasi, browser yang anda gunakan ini tidaklah aman dan tidak dapat menampilkan teknologi CSS terakhir yang dapat membuat sebuah situs tampil lebih baik. Bahkan Microsoft sebagai pembuatnya, telah merekomendasikan agar menggunakan browser yang lebih modern.

    Untuk tampilan yang lebih baik, gunakan salah satu browser berikut. Download dan Install, seluruhnya gratis untuk digunakan.

    We're Moving Forward.

    This Site Is No Longer Supporting Out-of Date Browser.

    If you are viewing this message, it means that you are currently using Internet Explorer 8 / 7 / 6 / below to access this site. FYI, it is unsafe and unable to render the latest CSS improvements. Even Microsoft, its creator, wants you to install more modern browser.

    Best viewed with one of these browser instead. It is totally free.

    1. Google Chrome
    2. Mozilla Firefox
    3. Opera
    4. Internet Explorer 9
    Close