The Most Complex 2D Microchip Yet
A three-atom-thick microchip with more than 100 transistors is the most complex microprocessor made from a 2-dimensional material to date, researchers say.
The new device is made of a thin film of molybdenite, or molybdenum disulfide (MoS2), which consists of a sheet of molybdenum atoms sandwiched between two layers of sulfur atoms. A single-molecule layer of molybdenum disulfide is only six-tenths of a nanometer thick. In comparison, the active layer of a silicon microchip is up to about 100 nanometers thick. (A nanometer is a billionth of a meter; the average human hair is about 100,000 nanometers wide.)
Scientists hope two-dimensional materials such as graphene or molybdenite will allow Moore’s Law to continue once it becomes impossible to make further progress using silicon. Whereas graphene is an excellent conductor, making it ideal for use in wiring and interconnections, molybdenite is a semiconductor, which means it can serve in the transistor switches that lie at the heart of electronic circuits.
The scientists detailed their findings online April 11 in the journal Nature Communications.
Until now, devices made from 2D materials consisted of up to only three or so transistors, says study senior author Thomas Müller, an electrical engineer at the Vienna University of Technology in Austria. Now, he and his colleagues have created a molybdenite microchip with 115 transistors.[Read More]
Comments :