That tsunami of new IoT gadgets? They all have to be tested before they roll out into the world, not only to meet government regulations but to verify adherence to a host of voluntary standards, like WiFi, Bluetooth, ZigBeeThread and others. That is a lot of testing. And that’s why TUV Rheinland recently opened a huge Silicon Valley test facility in Fremont, Calif.

It’s important for testing to be near the design teams, says TUV Rheinland’s Sarb Shelopal, the company’s global director of wireless and IoT testing. Distance, he says—and Silicon Valley’s traffic—is a big deal when companies are trying to move fast.

“Typically at the testing point,” says Shelopal, “a product team typically involves eight to ten people, but could be as big as 100, including safety engineers, software engineers, and hardware engineers. And when a product isn’t passing, we need to get them all in, and they will change this piece of hardware or this bit of software.”

Many of the tweaks, he said, can be made on site, with companies only having to go “back to the drawing board if they have a huge flaw in their design.”

TUV Rheinland’s Silicon Valley test center can test for compliance with the electromagnetic compatibility requirements set by the U.S. Federal Communications Commission and similar entities in other countries, such as the Conformité Europeéne and Industry Canada; that is, making sure the electromagnetic emissions of a product fall within set limits and don’t interfere with other products. It can also test for wireless interoperability for various standards, like WiFi and Zigbee, that is, making sure that a new mobile device works with other products designed to that standard. It can also perform SAR testing. (SAR, or Specific Absorption Rate, is a measure of the rate at which the body absorbs RF energy; governments specific limits for certain products, like mobile phones. It’s performed using models of humans filled with goo to simulate brain or body tissue.)  The center can also test medical devices, for safety and immunity from interference.

[READ MORE]