BINUS @
  • Greater Jakarta
  • Bekasi
  • Bandung
  • Malang
  • Semarang
Computer Engineering
Computer Engineering
  • BINUS @Greater Jakarta
  • BINUS @Bekasi
  • BINUS @Bandung
  • BINUS @Malang
  • BINUS @Semarang
  • About Us
    • Introduction
      • Vision & Mission
      • Program Objective
      • Graduate Competency
      • Prospective Career of The Graduate
      • Curriculum
        • Course Structure
        • Prerequisites
        • Quality Controlled Examination (UPM)
    • Accreditation
      • BAN PT
      • ABET
    • Social Media
      • Facebook
      • Instagram
      • Youtube
      • Keluarga Besar Sistem Komputer Binus University
      • Contact Us
    • Partnership/Collaboration
      • Teaching
      • Research
      • Community Development
      • Self Development
  • Lecturer
    • Department
      • Daniel Patricko G. Hutabarat, S.T., M.T.
      • Rico Wijaya, S.Kom, M.T.I.
      • Dr. Lukas Tanutama
      • Wiedjaja, S.Kom., M.Kom.
      • Endra, S.Kom, M.T.
      • Jimmy Linggarjati, S.Kom., M.Sc.
      • Dr. Eng. Suryadi, S.Si., M.Eng.
      • Ivan Alexander, S.T., M.T.I.
    • Research Interest Group Leader
      • Dr. Rinda Hedwig
      • Dr. Suryadiputra Liawatimena
    • Student Affairs & Community Development
      • Robby Saleh, S.Kom., M.T.
    • Faculty Member
      • Iman Herwidiana Kartowisastro, Ph.D.
      • Dr.Eng. Zener Sukra Lie
      • Rudy Susanto, S.Kom., M.T.I.
      • Ir. Santoso Budijono, M.M.
      • Johannes, S.Kom., M.T.
  • Student Activities
    • Company Visit
    • Guest Lecturer
    • Senior Gathering
    • Student Achievement
    • Himpunan Mahasiswa Sistem Komputer (HIMTEK)
  • CE Online Course
  • CE Laboratory
  • Certification
    • Recommended Certification Course
    • BINUS – Huawei ICT Academy
      • MoA
      • Instructor
  • Home
  • Contact Us
  • Social Media
  • More
BINUS 41th
  • Home
  • Articles
  • Applied Materials Says New Tool Breaks Chip Resistance Bottleneck

Applied Materials Says New Tool Breaks Chip Resistance Bottleneck

04 Sep 2020
  • Articles

The smallest vertical connections were becoming unworkable for new generations of chips

By Samuel K. Moore

The regular scaling down in the size of transistors has always had a similar scaling down in the size of the vertical metal contacts that bridge the devices themselves to the wiring that links them up to form logic gates.

But in the last few generations the resistance of those tungsten contacts has become a drag on performance, and chip makers had been eyeing moves to alternative materials for future generations. Chip equipment supplier Applied Materials says it’s come up with a machine that reverses this resistance problem, boosting the performance of today’s chips and allowing fabs to continue using tungsten into the future.

For devices on today’s most advanced chips “resistance is your key issue,” says Zhebo Chen, global product manager. “With the transistor you’ve taken an economy car and turned it into a race car, but if the roads are congested it doesn’t matter.”

The heart of the problem is that in the existing manufacturing process, tungsten contacts must be clad in a layer of titanium nitride. The process involves first forming a hole in a layer of dielectric to contact the transistor, then adding a layer of titanium nitride to line that hole and the surface of the dielectric. The next step uses a process called chemical vapor deposition to put tungsten on all the surfaces at once, growing from the nitride layer inwards within the holes until the hole is filled. Finally, the surface layer of tungsten is removed, leaving just the nitride-clad contacts.

In July, Applied Materials released a machine that can make tungsten contacts with no cladding at all, reducing resistance by 40 percent. This “selective gapfill process” deposits tungsten from the bottom of the contact hole up instead of on all the surfaces at once. Because it uses a different chemistry than the previous process, there’s no need for a liner’s adhesion enhancement nor its fluorine-blocking ability. However, the process does need to be accomplished completely in a vacuum, so the company built it around a sealed system capable of moving wafers through multiple process steps without exposing them to air.

Although the new machine, called the Endura Volta Selective Tungsten CVD system, was introduced in July, Chen says it’s already being used in high-volume manufacturing by leading manufacturers.

“There’s more than 100 kilometers of tungsten contact on a [300-millimeter] wafer,” says Chen. “Doing this right in high-volume manufacturing is exceedingly difficult.” [READ MORE]

Share to your friends
Cancel Reply

BINUS UNIVERSITY | Computer Engineering

Jl. K. H. Syahdan No. 9, Kemanggisan, Palmerah
Jakarta 11480, Indonesia
Phone +62 21 534 5830, +62 21 535 0660 ext. 2205
Fax +62 21 530 0244

Copyright © BINUS Higher Education. All rights reserved